

Kentucky
Energy and
Environment
Cabinet

Executive Summary

Assumption

Conclusion

Appendix

Models

References

Price Elasticity of Demand DRAFT Working Paper

Kentucky Energy and Environment Cabinet

Department for Energy Development & Independence Under Dr. Arne Bathke and Aron Patrick: Shaoceng Wei, Yang Luo, Edward Roualdes

July 25, 2011

Overview

Kentucky Energy and Environment Cabinet

Executive Summary

v arrables

Assumption

Conclusio

Diagnostic Plots

References

- Executive Summary
 - Variables
- 3 Assumptions
- 4 Conclusion
- 6 Appendix
 - Diagnostic Plots
 - Models

Purpose

Kentucky Energy and Environment Cabinet

Executive Summary

variables

Assumption

Conclusion

Diagnostic Plot

References

This study modeled the responsiveness between electricity prices and consumption in three economic sectors, industrial, commercial, and residential, using state-level electric utility data from across the United States for the years 1990 to 2010.

Definition 1 of PED

Kentucky Energy and Environment Cabinet

Executive Summary

Assumption

Conclusion

Diagnostic Plot

References

• This responsiveness is formally called the *price elasticity of demand*, denoted E_d . It measures the percentage change in quantity demanded of a good, given a one percent increase in the price of that good.

$$E_d = \frac{\% \text{ change in quantity}}{\% \text{ change in price}} = \frac{\Delta Q/Q}{\Delta P/P}$$

• Since economic's "Law of Demand" implies an inverse relation between P and Q, $E_d \leq 0$ (data don't always agree)

Definition 1 of PED

Kentucky Energy and Environment Cabinet

Executive Summary

variables

Assumption

Conclusion

Appendix
Diagnostic Plot

References

• This responsiveness is formally called the *price elasticity of demand*, denoted E_d . It measures the percentage change in quantity demanded of a good, given a one percent increase in the price of that good.

•
$$E_d = \frac{\% \text{ change in quantity}}{\% \text{ change in price}} = \frac{\Delta Q/Q}{\Delta P/P}$$

• Since economic's "Law of Demand" implies an inverse relation between P and Q, $E_d \leq 0$ (data don't always agree)

Definition 1 of PED

Kentucky Energy and Environment Cabinet

Executive Summary

variables

Assumption

Conclusio

Appendix
Diagnostic Plot

References

• This responsiveness is formally called the *price elasticity of demand*, denoted E_d . It measures the percentage change in quantity demanded of a good, given a one percent increase in the price of that good.

•
$$E_d = \frac{\% \text{ change in quantity}}{\% \text{ change in price}} = \frac{\Delta Q/Q}{\Delta P/P}$$

• Since economic's "Law of Demand" implies an inverse relation between P and Q, $E_d \leq 0$ (data don't always agree)

Kentucky Energy and Environment Cabinet

Executive Summary

Assumption

Conclusion

Diagnostic Plot

- The residential sector, on average, decreases their electricity consumption by 0.7% for every 1% increase in price, ceteris paribus.
- The commercial sector, on average, decreases their electricity consumption by 0.3% for every 1% increase in price, ceteris paribus.
- The industrial sector, on average, decreases their electricity consumption by 1.2% for every 1% increase in price, ceteris paribus.
- All results rely on model assumptions that do not appear to be justifiable.

Kentucky Energy and Environment Cabinet

Executive Summary

Conclusion

Diagnostic Plo

- The residential sector, on average, decreases their electricity consumption by 0.7% for every 1% increase in price, ceteris paribus.
- The commercial sector, on average, decreases their electricity consumption by 0.3% for every 1% increase in price, ceteris paribus.
- The industrial sector, on average, decreases their electricity consumption by 1.2% for every 1% increase in price, ceteris paribus.
- All results rely on model assumptions that do not appear to be justifiable.

Kentucky Energy and Environment Cabinet

Executive Summary

. . .

Conclusion

Diagnostic Plot

- The residential sector, on average, decreases their electricity consumption by 0.7% for every 1% increase in price, ceteris paribus.
- The commercial sector, on average, decreases their electricity consumption by 0.3% for every 1% increase in price, ceteris paribus.
- The industrial sector, on average, decreases their electricity consumption by 1.2% for every 1% increase in price, ceteris paribus.
- All results rely on model assumptions that do not appear to be justifiable.

Kentucky Energy and Environment Cabinet

Executive Summary

Assumption

Conclusion

Diagnostic Plot
Models

- The residential sector, on average, decreases their electricity consumption by 0.7% for every 1% increase in price, ceteris paribus.
- The commercial sector, on average, decreases their electricity consumption by 0.3% for every 1% increase in price, ceteris paribus.
- The industrial sector, on average, decreases their electricity consumption by 1.2% for every 1% increase in price, ceteris paribus.
- All results rely on model assumptions that do not appear to be justifiable.

UK KENTUCKY

Variables

Kentucky Energy and Environment Cabinet

Executive Summary

Variables

Assumption

Conclusion

Appendix
Diagnostic Plot

Primary	
esrcp/rateres	Residential Consumption (gWh / ¢/kWh)
esccp/ratecom	Commercial Consumption (gWh / ¢/kWh)
esicp/rateind	Industrial Consumption (gWh / ¢/kWh)
Secondary	
area	Land Area (Square Miles)
рсрі	Per Capita Personal Income by State
h/cdd	Heating / Cooling Degree Days
рор	Population by State
sp500	S&P 500 Stock Price
unemployment	Unemployment Rate per State

Kentucky Energy and Environmen Cabinet

Executive Summary

Variables

Assumption

Conclusion

Diagnostic Plot

- Annual data were used. Monthly data was also considered.
- Data over years 1990 to 2010 for the contiguous US states were used.
- All dollars converted to real prices.
- All variables transformed with natural logarithm, denoted In.
- Data come from a combination of sources, listed Instead

Kentucky Energy and Environmen Cabinet

Executive Summary

Variables

Assumption

Conclusion

Appendix
Diagnostic Plot

- Annual data were used. Monthly data was also considered.
- Data over years 1990 to 2010 for the contiguous US states were used.
- All dollars converted to real prices.
- All variables transformed with natural logarithm, denoted In.
- Data come from a combination of sources, listed here

Kentucky Energy and Environmen Cabinet

Executive Summary

Variables

Assumption

Conclusion

Diagnostic Plot

- Annual data were used. Monthly data was also considered.
- Data over years 1990 to 2010 for the contiguous US states were used.
- All dollars converted to real prices.
- All variables transformed with natural logarithm, denoted In.
- Data come from a combination of sources, listed here.

Kentucky Energy and Environmen Cabinet

Executive Summary

Variables

Assumption

Conclusion

Appendix

Diagnostic Plots Models

- Annual data were used. Monthly data was also considered.
- Data over years 1990 to 2010 for the contiguous US states were used.
- All dollars converted to real prices.
- All variables transformed with natural logarithm, denoted In.
- Data come from a combination of sources, listed Phere

Kentucky Energy and Environment Cabinet

Executive Summary

Variables

Assumption

Conclusio

Diagnostic Plot

- Annual data were used. Monthly data was also considered.
- Data over years 1990 to 2010 for the contiguous US states were used.
- All dollars converted to real prices.
- All variables transformed with natural logarithm, denoted In.
- Data come from a combination of sources, listed here.

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Conclusion

Diagnostic Plot

References

Skip assumptions section if statistical \slash mathematical language will deter you.

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Diagnostic Plot

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for i = 1, ..., N
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. *P* implies *Q*, but not vice-versa
- E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Diagnostic Plot

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for $i = 1, \dots, N$
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. *P* implies *Q*, but not vice-versa
- E_d constant over time.

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Diagnostic Plot
Models

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for i = 1, ..., N
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. P implies Q, but not vice-versa
- E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Appendix
Diagnostic Plot

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for i = 1, ..., N
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. P implies Q, but not vice-versa
- E_d constant over time.

Kentucky Energy and Environment Cabinet

Executive Summary

Variables

Assumptions

Conclusion

Diagnostic Plot

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for i = 1, ..., N
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. P implies Q, but not vice-versa
- E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Variables

Assumptions

Conclusion

Diagnostic Plot

- Linearity. $Q = \beta_0 + \beta_1 P + \mathbf{X}\beta + \epsilon$
- Constant Variance. $Var(\epsilon_i) = \sigma^2$, for i = 1, ..., N
- Normality. $\epsilon_i \sim_{iid} N(0, \sigma^2)$, for i = 1, ..., N
- No misspecification. All relevant predictors of Q included in the model, and linearity and additivity of predictors.
- Price Exogenous. P implies Q, but not vice-versa
- *E*_d constant over time.

Definition 2 PED

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Conclusion

Diagnostic Plot

References

• Recall: "Law of Demand" implies $E_d \leq 0$

•
$$E_d = \frac{\partial \log(Q)}{\partial \log(P)}$$

 By definition, E_d is estimated with the coefficient term of log(P), where log(Q) is regressed on log(P).

Definition 2 PED

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Diagnostic Plo

References

• Recall: "Law of Demand" implies $E_d \leq 0$

•
$$E_d = \frac{\partial \log(Q)}{\partial \log(P)}$$

 By definition, E_d is estimated with the coefficient term of log(P), where log(Q) is regressed on log(P).

Definition 2 PED

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumptions

Conclusion

Appendix

Models

References

• Recall: "Law of Demand" implies $E_d \leq 0$

•
$$E_d = \frac{\partial \log(Q)}{\partial \log(P)}$$

• By definition, E_d is estimated with the coefficient term of log(P), where log(Q) is regressed on log(P).

Model Selection

Kentucky Energy and Environment Cabinet

Executive Summary

• arrabics

Assumptions

Conclusion

Diagnostic Plot

References

 Best subset procedure, with BIC metric, was used to select final models.

 All possible combinations of the predictor variables were evaluated. A mix of low BIC, economic theory, and diagnostic plots were used in picking the models.

Model Selection

Kentucky Energy and Environment Cabinet

Executive Summary

Assumptions

. . .

Diagnostic Plot Models

- Best subset procedure, with BIC metric, was used to select final models.
- All possible combinations of the predictor variables were evaluated. A mix of low BIC, economic theory, and diagnostic plots were used in picking the models.

Estimates / Comparison

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumption

Conclusion

Diagnostic Plot

References

DEDI's Estimates

•
$$\hat{E}_{d,r} = -0.73^*$$

•
$$\hat{E}_{d,c} = -0.35^*$$

•
$$\hat{E}_{d,i} = -1.23^*$$

* indicates p - value < 0.01.

Gatton's Estimates

- -0.56*
- -0.51*
- −0.83*

Kentucky Energy and Environment Cabinet

Executiv Summar

Assumption

Conclusion

Diagnostic Plo

- Most assumptions violated: diagnostic plots.
 - There exist some outliers, but only significant to the industrial sector. Residential and commercial sectors stable with respect to the inclusion/exclusion of outliers
- Serial correlation in all sectors may imply missing predictor variable(s).
- Still need to check E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Conclusion

Diagnostic Plot

- Most assumptions violated: diagnostic plots.
- There exist some outliers, but only significant to the industrial sector. Residential and commercial sectors stable with respect to the inclusion/exclusion of outliers.
- Serial correlation in all sectors may imply missing predictor variable(s).
- Still need to check E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Conclusion

Diagnostic Plo Models

- Most assumptions violated: diagnostic plots.
- There exist some outliers, but only significant to the industrial sector. Residential and commercial sectors stable with respect to the inclusion/exclusion of outliers.
- Serial correlation in all sectors may imply missing predictor variable(s).
- Still need to check E_d constant over time

Kentucky Energy and Environment Cabinet

Executive Summary

Conclusion

Diagnostic Plot
Models

- Most assumptions violated: diagnostic plots.
- There exist some outliers, but only significant to the industrial sector. Residential and commercial sectors stable with respect to the inclusion/exclusion of outliers.
- Serial correlation in all sectors may imply missing predictor variable(s).
- Still need to check E_d constant over time.

Take Away

Kentucky Energy and Environment Cabinet

Executive Summary

Variables

Assumption

Conclusion

Diagnostic Plo

References

• Linear model seems forced on the data, however estimates appear to match theory: decent first step.

- Differences between two studies suggest all estimates only approximate.
- Much further research necessary.

Take Away

Kentucky Energy and Environment Cabinet

Executive Summary

.

Assumption

Conclusion

Diagnostic Plot

- Linear model seems forced on the data, however estimates appear to match theory: decent first step.
- Differences between two studies suggest all estimates only approximate.
- Much further research necessary.

Take Away

Kentucky Energy and Environment Cabinet

Executive Summary

.

Assumption

Conclusion

Diagnostic Plot

- Linear model seems forced on the data, however estimates appear to match theory: decent first step.
- Differences between two studies suggest all estimates only approximate.
- Much further research necessary.

Kentucky
Energy and
Environment
Cabinet

Executive Summary

variables

Assumption

Conclusion

Conclusion

Diagnostic Plot

References

Thank you

Residential

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumption

Conclusio

Appendix
Diagnostic Plots

5.6

• Stable estimates with or without outliers.

Commercial

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumption

Conclusion

Appendix
Diagnostic Plots

Poforoncos

Stable estimates with or without outliers.

Industrial

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumption

Conclusion

Appendix
Diagnostic Plots

Roforonco

• Estimate goes to -0.7 with outliers removed.

Residential Model

Kentucky Energy and Environment Cabinet

Executive Summary

• arrabics

Assumption

Conclusion

Diagnostic Plot

Models

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-1.3554	0.2986	-4.54	0.0001
lesrcd	-0.7298	0.0255	-28.58	0.0001
lwacdd	0.0725	0.0139	5.20	0.0001
lwahdd	-0.2183	0.0207	-10.52	0.0001
lpop	0.9332	0.0071	130.81	0.0001

Commercial Model

Kentucky Energy and Environment Cabinet

Executive Summary

variable

Assumption

Conclusion

Diagnostic Plot

Models

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-4.1050	0.2804	-14.64	0.0001
lesccd	-0.3464	0.0319	-10.87	0.0001
lsp500	0.1845	0.0222	8.32	0.0001
lwahdd	-0.1487	0.0163	-9.14	0.0001
lpop	0.9538	0.0087	109.38	0.0001

Industrial Model

Kentucky Energy and Environment Cabinet

Executive Summary

Variable

Assumption

Conclusion

Diagnostic Plot

Models

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0066	0.3919	0.02	0.9865
lesicd	-1.2339	0.0534	-23.08	0.0001
lsp500	-0.2918	0.0373	-7.83	0.0001
larea	0.0325	0.0148	2.19	0.0288
lwacdd	0.0738	0.0184	4.00	0.0001
lpop	0.8628	0.0147	58.73	0.0001

Data Sources

Kentucky Energy and Environment Cabinet

Summary

• arrabics

Assumption

Conclusion

Appendix
Diagnostic Plot
Models

Referen

Variable	Source	
Price	(EIA, 2009)(EIA, 2011)(EIA-SEDS, 2009)	
Consumption	(EIA, 2009)(EIA, 2011)(EIA-3ED3, 2009	
area	(Census, 2011)	
pop		
рсрі	(BLS, 2011)	
unemployment		
hdd	(NOAA, 2011)	
cdd	(NOAA, 2011)	
sp500	(Shiller, 2001)	

References I

Kentucky Energy and Environment Cabinet

Executive Summary

- -----

Assumption

Conclusion

Appendix
Diagnostic Plots
Models

- BLS. (2011). Bureau of Labor Statistics. Retrieved July 2011, from bls.gov/data
- Census. (2011). U.S. Census. Retrieved July 2011, from factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml
- EIA. (2009). Form EIA-861. Available from www.eia.gov/cneaf/electricity/page/eia861.html
- EIA. (2011, June 10). Form EIA-826. Available from www.eai.gov/cneaf/electricity/page/eia826.html
- EIA-SEDS. (2009). U.S. Energy Information Administration State Energy Data System. Retrieved July 2011, from www.eia.gov/state/seds/#

References II

Kentucky Energy and Environment Cabinet

Executive Summary

Assumption

Conclusio

Appendix
Diagnostic Plot

References

NOAA. (2011). National Oceanic and Atmospheric
Administration. Retrieved July 2011, from
www.ncdc.noaa.gov/oa/ncdc.html
Shiller, R. J. (2001). Irrational exuberance. Princeton, NJ.:
Princeton University Press.